Зарегистрироваться или Войти

Основные разделы


Основные разделы


Разделы


Вы можете сразу в этой поисковой строке набрать то, что ищете и сразу найдете то, что искали.

Задачи по теплотехнике

У нас Вы можете заказать любые варианты. Сделаем все быстро, недорого, качественно!!! Для заказа нажимаем Вот сюда или пишем darkstich@gmail.com

1. Рассчитать горизонтальный теплообменный аппарат для нагрева G, т/ч воды от температуры t1, ºС до температуры t2, ºС. Нагрев воды производится насыщенным водяным паром с абсолютным давлением р, МПа. В водяном паре содержится x, % воздуха.
2. Рассчитать трехкорпусную выпарную установку с естественной циркуляцией раствора для концентрирования G т/ч водного раствора хлористого натрия (NaCl) с начальной концентрацией Сн, %. Конечная концентрация раствора Ск, %. Все концентрации массовые. Подогрев раствора в аппарате производится насыщенным водяным паром с абсолютным давлением p, МПа. Высота греющих труб – h, м. В выпарной установке используется барометрический конденсатор с вакуумом pвак, МПа.
3. В комнате площадью 35 м2 и высотой 3м воздух находится при температуре 23ºC и барометрическом давлении 737 мм.рт.ст.
Какое количество воздуха проникает в комнату с улицы, если барометрическое давление увеличивается до 762 мм рт.ст.? Температура воздуха остается постоянной.
4. 4 кг азота с первоначальным давлением 0,95 МПа и температурой 40ºC сжимаются до уменьшения объема в 10 раз по адиабате.
Определить начальный и конечный объем газа, конечные давление и температуру, работу процесса.
5. Определить значения газовой постоянной, кажущуюся молярную массу и плотность при нормальных условиях и при температуре 300ºС и давлении 0,1018 МПа. Смесь газа задана следующим массовым составом: Н = 35%, СО = 18%, SО = 47%.
6. Газ с начальными параметрами р1 и t1 вытекает из сопла Лаваля в атмосферу с давлением р2. Расход газа m. Определить диаметр выходного сечения сопла, если его скоростной коэффициент равен φ. Скоростью кислорода на входе в сопло пренебречь.
7. Перегретый пар с начальными параметрами р1 и t1 вытекает через суживающееся сопло в атмосферу с давлением р2. Определить критическую скорость и критическое давление, а также действительную скорость и максимальный секундный расход пара, если площадь поперечного сечения сопла и скоростной коэффициент равны f и φ. Скоростью газа на входе в сопло пренебречь. Изобразить i-s-диаграмму истечения перегретого пара.
8. С помощью i-s диаграммы определить начальные и конечные параметры пара (v, p, t, I, s), степень сухости (х), а также определить работу расширения (L) и количество теплоты, участвующей в процессе (Q). Указать, в каком агрегатном состоянии находится пар в начальной и конечной точках.
9. Пользуясь таблицами теплофизических свойств воды и водяного пара и расчетными формулами, найти удельный объем, энтальпию и энтропию, а также определить внутреннюю энергию влажного насыщенного пара при заданных давлении и влажности и перегретого пара при заданных давлении и температуре.
10. В закрытом сосуде находится газ при избыточном давлении 0,02 МПа и температуре 30оС. Показания барометра равны 748 мм рт.ст. при 25оС. После охлаждения газа разрежение стало равным 10 КПа. Определить конечную температуру газа
11. 1 кг воздуха с начальным давлением 0,1 МПа и начальной температурой 20оС сжимается политропно до конечного давления 1 МПа. Определить работу сжатия, изменение внутренней энергии и количество отведенной теплоты от воздуха, если показатель политропы n = 1,3. Среднюю теплоемкость определить в интервале температур от t1 до t2.
Газ коксовых печей имеет следующий объемный состав: Н = 48%, СН = 26%, СО = 8%, СО = 3%, N = 15%.
Найти кажущуюся молярную массу, массовые доли, газовую постоянную, плотность и парциальные давления при температуре 22 С и давлении 0,108 МПа.
12. В сосуде объемом 5 м3 находится воздух при давлении 0,1 МПа и температуре 30C. Затем воздух выкачивается до тех пор, пока в сосуде не образуется вакуум, равный 80 КПа. Температура воздуха после выкачивания остается такой же. Атмосферное давление по ртутному барометру равно 758,6 мм рт. ст. при температуре 20 0C.Сколько воздуха (кг) выкачано?
13. 3 кг воздуха с первоначальным давлением 0,3 МПа и температурой 40C сжимаются до уменьшения объема в 10 раз по адиабате. Определить начальный и конечный объем газа, конечные давление и температуру, работу процесса.
14. Определить значения газовой постоянной, кажущуюся молярную массу и плотность при нормальных условиях и при температуре 300ºС и давлении 0,1018 МПа. Смесь газа задана следующим массовым составом: Н = 35%, СО = 18%, SО = 47%.
15. 1 кг воздуха с начальным давлением 0,1 МПа и начальной температурой 20оС сжимается политропно до конечного давления 1 МПа. Определить работу сжатия, изменение внутренней энергии и количество отведенной теплоты от воздуха, если показатель политропы n = 1,3. Среднюю теплоемкость определить в интервале температур от t1 до t2.
16. 25 кг воздуха при температуре 27C изотермически сжимается до тех пор, пока давление не становится равным 4,2 МПа. На сжатие затрачивается работа, равная –8 МДж. Найти начальные давление и объем, конечный объем и тепло, отведенное от воздуха.
17. Генераторный газ состоит из следующих объемных частей: Н = 20%, СО = 25%, СО = 5%, N = 50%. Определить газовую постоянную генераторного газа и массовый состав входящих в смесь газов.
18. Масса пустого баллона для аргона емкостью 40 л равна 64 кг. Какова будет масса баллона с аргоном, если при температуре 5C баллон наполняют газом до давления 15 МПа? Как изменится давление аргона, если баллон внести в помещение, где температура 35 0C?
19. 0,25 м3 воздуха с начальной температурой 20оС подогревают в цилиндре диаметром 0,6 м при постоянном давлении 0,3 МПа до температуры 220оС. Определить работу расширения, перемещение поршня и количество затраченной теплоты, считая зависимость теплоемкости от температуры линейной.
20. Определить газовую постоянную, плотность при нормальных условиях и объемный состав смеси, если ее массовый состав следующий: Н = 6,4%, СН = 62,6%, С Н = 8,8%, СО = 22,2%
21. Генераторный газ имеет следующий объемный состав: Н = 8,3%, СН = 3,6%, СО = 25,4%, СО = 6,7%, N = 56%. Определить массовые доли, кажущуюся молярную массу, газовую постоянную, плотность и парциальные давления при температуре газа 18 С и давлении 0,12 МПа.
22. В цилиндре с подвижным поршнем находится кислород при температуре 80C и разряжении, равном 42,6 КПа. При постоянной температуре кислород сжимается до избыточного давления 1,2 МПа. Барометрическое давление равно 749,3 мм рт. ст. при температуре 20 0C. Во сколько раз уменьшится объем кислорода?
23. 4 кг азота с первоначальным давлением 0,95 МПа и температурой 40C сжимаются до уменьшения объема в 10 раз по адиабате.
Определить начальный и конечный объем газа, конечные давление и температуру, работу процесса.
24. Определить массовый состав газовой смеси, состоящей из углекислого газа и азота, если известно, что парциальное давление углекислого газа 0,24 МПа, а давление смеси 0,4 МПа.
25. Для цикла поршневого двигателя внутреннего сгорания с подводом теплоты при постоянном объеме определить количество подведенной теплоты, полезную работу и термический КПД цикла, если количество отведенной теплоты равно 125 кДж/кг, температура в конце сжатия 450ºС, а температура в конце расширения 200ºС. Рабочее тело-воздух. Теплоемкость принять постоянной. Изобразить цикл в p-v и T-s диаграммах.
26. Проект паротурбинной установки предусматривает следующие условия ее работы: Р1=30 МПа; t1 = 550ºC; Р2 = 0,1 МПа. При давлении Р'=7 МПа вводится вторичный перегрев до температуры 540ºС. Принимая, что установка работает по циклу Ренкина, определить конечную степень сухости пара при отсутствии вторичного перегрева пара и улучшение термического КПД и конечную сухость пара после применения вторичного перегрева.
27. Определить подведенную и отведенную теплоту, полезную работу цикла ДВС при изобарном подводе теплоты, если начальные параметры рабочего тела: p1=0,15 МПа; t1=18°C; конечное давление p2=2,8 МПа; степень предварительного расширения =1,4. Теплоемкость принять постоянной. Определить также параметры в характерных точках цикла, изменение энтропии в каждом из процессов. Сравнить к.п.д. данного цикла с к.п.д. цикла Карно, который проходит в том же интервале температур. Изобразить цикл в р-v и T-s диаграммах.
28. Сухой насыщенный пар при постоянном давлении р1=0,1 МПа сначала перегревается до 600оС, а затем при неизменном объеме вновь охлаждается до сухого насыщенного состояния. Найти изменения энтальпии, внутренней энергии и энтропии в рассматриваемом сложном процессе по величине и знаку. Изобразить процессы в i-s диаграмме.
29. Газовая турбина работает по циклу с подводом теплоты при постоянном давлении. Известны параметры p1 = 0,1 МПа, = 19C, t3 = 850oC и характеристика цикла  = = 10. Рабочее тело – воздух. Масса рабочего тела 0,9 кг. Изобразить принципиальную схему газотурбинной установки и ее теоретический цикл в — и — диаграммах. Определить параметры в характерных для цикла точках, изменение энтропии в каждом из процессов, количество подведенной и отведенной теплоты, полезную работу и термический к.п.д. цикла. Теплоемкость считать постоянной.
30. Как будет изменяться к.п.д. цикла паросиловой установки, а также какие изменения произойдут с рабочим телом в конце расширения, если изменить начальные параметры пара p1=1,5 МПа и t1=350C следующим образом: в первом случае повысить температуру перегрева до t1’= 550C при неизменном давлении p1; во втором – увеличить давление до p1,, = 5 МПа при неизменной температуре t1; в третьем – одновременно повысить давление и температуру до p1,,, = 5 МПа и t1,,,= 550C? Расширение вести до давления p2 = 0,005 МПа.
31. Рассчитать допустимую геометрическую высоту расположения насоса над уровнем всасываемой воды и мощность N на валу по следующим исходным данным: подача насоса, давление за насосом, температура подаваемой воды, высота сопротивления всасывающего трубопровода. Установка оборудована центробежным насосом двухстороннего входа типа Д, имеющим внутренний диаметр рабочего колеса, частоту вращения вала, КПД. Давление над уровнем всасываемой воды.
Вычертить схему установки насоса с указанием основных размеров.
32. Центробежный одноступенчатый неохлаждаемый компрессор типа ТКФ–125 при работе на фреоне R – 12 и частоте вращения вала обеспечивает конечное давление и объемную подачу, отнесенную к начальной температуре и давлению.
Определить подачу и конечное давление, если частота вращения будет равна. Рассчитать конечное давление при частоте вращения, если сжимаемой средой будет фреон R – 142, а всасывание происходит при начальной температуре и давлении.
33.Определить количество ступеней z ход S и диаметр D поршня в каждой ступени, мощность N на валу горизонтального крейцкопфного компрессора с дифференциальным поршнем при следующих исходных данных: конечное давление, подача при условиях всасывания, относительный объем мертвого пространства a, частота вращения вала п.
Охлаждение воздуха происходит водой в промежуточных охладителях до начальной температуры. Начальное давление всасывания, показатель политропы расширения воздуха в мертвом пространстве. Самостоятельно оценить следующие параметры: коэффициент герметичности, термический коэффициент, изотермический КПД, механический КПД, коэффициент потерь давления в промежуточных охладителях отношение хода поршня к диаметру цилиндра для первой ступени.
Вычертить схему компрессора с указанием рассчитанных геометрических размеров.
34.Для промежуточной активной турбинной ступени рассчитать средний диаметр, высоту сопловой лопатки, высоту рабочей лопатки, располагаемую мощность, относительный лопаточный КПД, мощность на рабочих лопатках, внутренний относительный КПД и полезную мощность ступени при следующих исходных данных: частота вращения ротора, коэффициент скорости сопл, коэффициент скорости рабочих лопаток, отношение окружной скорости к абсолютной скорости выхода пара из сопл, относительные потери от трения, относительные потери от утечек, давление и температура водяного пара перед сопловой решеткой и, давление за рабочей решеткой, расход пара через ступень, скорость пара на входе в сопловую решетку, угол наклона к плоскости диска.
На миллиметровой бумаге в масштабе построить треугольники скоростей для потока пара в турбинной ступени, а также процесс расширения в диаграмме.

0 комментариев

Только зарегистрированные и авторизованные пользователи могут оставлять комментарии.



INTERKASSA Здесь находится аттестат нашего WM идентификатора 261722815476

Яндекс.Метрика