У нас Вы можете заказать любые варианты. Сделаем все быстро, недорого, качественно!!! Для заказа нажимаем Вот сюда или пишем darkstich@gmail.com
35. Для ГТУ, работающей со сгоранием топлива при постоянном давлении, определить расход топлива или расход воздуха при следующих исходных данных: эффективная мощность установки, температура всасываемого в компрессор воздуха, степень повышения давления в компрессоре, температура газа на выходе из камеры сгорания, внутренний КПД компрессора, относительный внутренний КПД турбины, КПД камеры сгорания, механический КПД установки, низшая теплота сгорания топлива, показатель адиабаты, удельная теплоемкость. В диаграмме схематично изобразить циклы идеальной и реальной ГТУ со сгоранием при.
36. Восьмицилиндровый четырехтактный дизельный двигатель нагружен электрогенератором и работает на топливе с низшей теплотой сгорания. Определить диаметр цилиндра, ход поршня, эффективный КПД, индикаторный КПД, расход топлива и расход воздуха, проходящего через двигатель, если КПД электрогенератора, механический КПД двигателя, коэффициент заполнения цилиндра воздухом, плотность воздуха, напряжение на клеммах генератора U, ток I, среднее эффективное давление, частота вращения коленчатого вала n, отношение хода поршня к диаметру цилиндра, удельный индикаторный расход топлива.
37. Определить: эффективную, индикаторную мощности и мощность механических потерь; среднее индикаторное давление, индикаторный и эффективный крутящие моменты; удельный индикаторный, удельный эффективный расходы топлива; термический, относительный, индикаторный, эффективный и механический коэффициенты полезного действия, если 4-тактный 6-цилиндровый рядный двигатель с рабочим объемом одного цилиндра 0,62 л и низшей теплотворной способностью топлива 46 МДж/кг работает на установившемся режиме с угловой скоростью вращения коленчатого вала 320 рад/с. Степень сжатия и показатель адиабаты равны 8 и 1,4. Рм = 210 кПа, Gт = 24 кг/ч, Ре = 800 кПа.
38. 7 кг газа сжимается до уменьшения объема в «» раз. Сжатие производится изотермическое и адиабатное. Определить объем газа в начале и конце сжатия, изменения внутренней энергии, тепло и затраченную работу для двух случаев сжатия,, если дано:
Начальное давление P = 0,15МПа
Начальная температура t1 = 270C
Показатель адиабаты К = 1,4
Степень сжатия = 3
Газ Nг азот
Плоская стальная стенка толщиной δ=15мм омывается с одной стороны газами с температурой t1(0С), с другой стороны водой с температурой t2(0С).
Коэффициент теплоотдачи от газов к стенке α1 = 38 Вт/м2град
Коэффициент теплоотдачи от стенки к воде α2 = 4500 Вт/м2град
Коэффициент теплопроводности стали = 50 Вт/мград
t1 = 14000С, t2 = 2000С
Определить коэффициент теплопередачи, тепловой поток и температуру обоих поверхностей стенки.
39. Газовая смесь состоит из нескольких компонентов, содержание которых в смеси задано в процентах по объему (таблица 1).
Определить:
1) кажущуюся молекулярную массу смеси;
2) газовую постоянную смеси;
3) средние мольную, объемную и массовую теплоемкости смеси при постоянном давлении в пределах температур от t1 до t2 (таблица 2).
40. Рабочее тело – газовая смесь, имеющая тот же состав, что и в задаче №1 (в процентах по объему). Первоначальный объем, занимаемый газовой смесью, — V1. Начальные параметры состояния: давление р1 = 0,1 МПа, температура t1 = 27ºС. Процесс сжатия происходит при показателе политропы n. Давление смеси в конце сжатия Р2, МПа. (Табл. 3). Определить: 1) массу газовой смеси;
2) уд. объемы смеси в начале и в конце процесса;
3) объем, занимаемый смесью в конце процесса;
4) температуру газовой смеси в конце процесса;
5) работу сжатия в процессе;
6) работу, затрачиваемую на привод компрессора;
7) изменение внутренней энергии газовой смеси;
8) массовую теплоемкость рабочего тела в данном процессе;
9) количество теплоты, участвующего в процессе;
10) изменение энтропии в процессе.
Построить (в масштабе) рассмотренный процесс в координатах p-v и T-s.
41. Рабочее тело в цикле Карно – 1 кг сухого воздуха. Предельные температуры рабочего тела в цикле: наибольшая t1, наименьшая t3. Предельные давления рабочего тела в цикле: наибольшее р1, наименьшее р3.
Определить: 1) основные параметры рабочего тела в характерных точках цикла; 2) количество теплоты, подведенное в цикле; 3) количество теплоты, отведенное в цикле; 4) полезную работу, совершенную рабочим телом за цикл; 5) термический КПД цикла; 6) изменение энтропии в изотермических процессах цикла.
Построить цикл (в масштабе) в координатах p-v и T-s
42. Рабочее тело-водяной пар, имеющее в начальном состоянии давление Р1 и температуру t1. Масса рабочего тела M. Пар расширяется до давления P2.
Схематически построить процесс расширения водяного пара в диаграмме h-s.
Определить:
1) удельный объем и энтальпию пара в начальном состоянии;
2) температуру, удельный объем, степень сухости и энтальпию пара в конечном состоянии;
3) значение внутренней энергии пара до и после расширения
4) работу расширения пара в адиабатном процессе.
43. Паротурбинная установка работает по теоретическому циклу Ренкина. Давление и температура водяного пара на выходе из парогенератора (перед турбиной): р1 и t1; давление пара после турбины (в конденсаторе) р2.
Определить термический коэффициент полезного действия цикла ηt и теоретический удельный расход пара d, кг/(кВт•ч) при следующих условиях работы установки:
I — р1, t1 и р2. (все параметры взять из табл. 6);
II — р1, t1 (табл. 6); р2 (табл. 7);
III — р1, t1 и р2. (все параметры взять из табл. 7).
Сделать вывод о влиянии уровня начальных параметров состояния пара и давления пара после турбины на значения термического КПД цикла Ренкина и удельного расхода пара. К решению задачи приложить принципиальную схему паротурбинной установки, изображение цикла Ренкина в координатах p-v и T-s, также изображение процесса расширения пара в турбине в диаграмме h-s.
44. Сухой воздух массой 1кг совершает прямой термодинамический цикл, состоящий из четырех последовательных процессов.
Требуется:
1) рассчитать давление р, удельный объем v, температуру Т воздуха для основных точек цикла;
2) для каждого из процессов определить значения показателей политропы n, теплоемкости С, вычислить изменение внутренней энергии ∆u, энтальпии ∆i, энтропии ∆s, теплоту процесса q, работу процесса l, располагаемую работу lо;
3) определить суммарные количества теплоты подведенной q´ и отведенной q", работу цикла lц, располагаемую работу цикла l0ц, термический к.п.д. цикла ηt, среднее индикаторной давление Pi;
4) построить цикл в координатах: а) T-S; б) v–p, нанести основные точки цикла и составляющие его процессы;
Принять газовую постоянную равной 0,287 кДж/(кг•К), теплоемкость при постоянном давлении равной 1,025кДж/(кг•К).
45. По горизонтальному стальному трубопроводу, внутренний и наружный диаметры которого и соответственно, движется вода со средней скоростью. Средняя температура воды. Трубопровод покрыт теплоизоляцией и охлаждается посредством естественной конвекции сухим воздухом с температурой.
Выполнить следующие действия:
1. определить наружный диаметр изоляции, при котором на внешней поверхности изоляции устанавливается температура.
2. определить линейный коэффициент теплопередачи от воды к воздуху, Вт/(мК)
3. потери теплоты с 1 м. трубопровода, Вт/м
4. определить температуру наружной поверхности стального трубопровода ,°С
5. провести анализ пригодности изоляции.
46. При решении задачи принять следующие предложения:
1. течение воды в трубопроводе является термически стабилизированным
2. между наружной поверхностью стального трубопровода и внутренней поверхностью изоляции существует идеальный тепловой контакт
3. теплопроводность стали Вт/(мК) и изоляции не зависит от температуры.
Наружный диаметр изоляции должен быть рассчитан с такой точностью, чтобы температура на наружной поверхности изоляции отличалась от заданной температуры не более чем на 0,2 °С.
47. Рассчитать теоретическую объемную производительность компрессора, теоретическую мощность, затрачиваемую в компрессоре на адиабатическое сжатие холодильного агента, и холодильный коэффициент цикла одноступенчатой парокомпрессионной холодильной машины
48. В помещении компрессорной станции объемом V произошла разгерметизация трубопровода, по которому транспортируется горючий газ под давлением P1 при температуре Т1. через образовавшееся в трубопроводе сквозное отверстие площадью f газ выходит в помещение.Рассчитать, через какое время τ во всем объеме компрессорной станции может образоваться взрывоопасная смесь, а также среднюю молекулярную массу, плотность, удельный объем и изобарную удельную массовую теплоемкость смеси, если ее температура Т = 293 К, а давление Р = 100 кПа. Коэффициент расхода отверстия ξ = 0,7. воздухообмен не учитывается.
49. Рукавная линия диаметром d поперечно обдувается воздухом со скоростью ωв. Температура воздуха tв. По рукавной линии со скоростью ωж движется вода, температура которой на входе в рукавную линию t'ж. рассчитать максимальную длину рукавной линии из условия, чтобы температура на выходе из рукавной линии была t''ж ≥ 10С. Толщина стенки рукавной линии δ = 4мм. эквивалентный коэффициент теплопроводности материала рукава принять λ = 0,115 Вт/(м∙К).